s (s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

() AT b Al cililall Allad 580 ciliby i) Aajlsd pvand
1@)5) JLQ.C .9 .i

tgadlall

o ik Lo Aias dalee Gl gb dadall @l cpias Lkl 8 Tage Laat 5 Sl bl (<
Aa o3 Jal L Jled (<8 (Al dalie andied AdEal cpidall dadals . gindleey Lelaly bl s
bk ey 8 oK1l - il ! AUl culalal) L calilall Jhy5a) maolie adgil JIBaY) Glu))ld aadiud
2 Gaad) Jsha ol LS L 5ol el Jsbay adlaill A0 i i adleailly aner Lo aag ¢ it cpilal ilgl)
Galad) IRV £ de 5)lke a3 ¢ laadl ol slas) Cile Jaad Lodie L aolea Gygan Adlain) i J5idl)
Apladly Gl ddee e 23 Alacdl 8 A35a) UL Bl ae oK1 aldatl) AR el a4
el 8 5y Sl dnguall bl (p3a3 LBl Caldl (ssin e 5)Sa Glily olal] 405 a0 485l sda
sl Jeas eliil @ub oo JFaY) a8 oo ol o) s) da gl Ll Qg . alaadl gajaall
e Ahgiine lile dlagiiae e ilile) Cigeall Cale dxgua o alaeYl Goledll 538 aanad LBt (e)lels
IS5 Banie Lujled JIFRY) Jon ey ¢ JUlls L (Ulal) (3 o 090 Adagiae Slile cclill) A oo
Jshas lalide g5 lly « MD6Zue)ylss aladisd oy canbeal Cigon Lllain) Q) 5o0ne dipea dal (o (e
w512

ceandl Rl — Aggeal) clildl - MD6 — &aill Jsaa — 5y,Sal clilall olal] :Laalidall cilalst)

Lysee colon cdalall duida gl daalal) cduoigl £S canlal) duovia acd (M 1
Ly e pman et oSy LISl Lunrigh B cadsally V) aSatl) dasin and coy5i€0 Al 2

140

2oy s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

Designing an Efficient Deduplication Algorithm

for Audio Files in Cloud Storage

Prof. Dr. Ammar Zakzouk!

Eng. Hasan Hasan?

ABSTRACT:

Data duplication is a significant challenge in large—scale data storage systems, as it
consumes storage space and impacts data organization, management, and processing.
An optimal storage system effectively utilizes available storage space. To solve this
problem, hash algorithms are employed to generate hash keys for files. Matching files
have the same hash key. However, the hash key for two different files in the data may
match, and this is what we refer to as a collision. The collision issue is related to the
length of the hash key. As the length of the hash key increases, the probability of a
collision occurring decreases. When a file is uploaded to the cloud storage system, its
hash key is compared with the existing keys stored in the system. However, as the
amount of data stored in the cloud increases, the time required for searching and
matching also increases. In This paper, we will introduce a File-Level Deduplication
technique to deduplicate audio data at the in the cloud storage system. The proposed
technique aims to reduce the search time for hash values by creating a table with multiple
indexes. These indexes are categorized based on the format of the audio file, such as
uncompressed formats, formats with lossy compression, and formats with lossless
compression. Each table contains multiple indexes in the hash table, specifically designed
for a particular audio file format. To reduce the probability of data collision, Message

Digest—-6 (MDG6) algorithm will be used, which generates a 512-bit hash key.

KEYWORDS: Deduplication, hash table, MD6, audio files, cloud storage.

1 Professor, Faculty of Engineering, Department of Computer Engineering, Al-Wataniya Private
University, Hama, Syria
2 Ph.D Student, Faculty of Mechanical & Electrical Engineering, Automatic Control and Computer

Engineering, Al-Baath University, Homs, Syria

141

2oy s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

1. Introduction

The cloud storage system handles a large volume of data in various formats (audio, text,
video, images) from different sources. Some of data are duplicated, which are considered
unnecessary [1]. To optimize storage space and improve the performance of the cloud
system in terms of storage and processing, techniques for removing duplicate data have
been employed. There are two types of duplicate data detection methods: source-based
detection (client-side) and target-based detection (server—side) [2]. In general, the
deduplication process involves generating a hash key for each file and comparing it with the
hash keys of other files to determine if it should be stored. A hash table is used to store all
the hash keys of the stored files [3]. However, as the size of the data stored in the cloud
storage system increases, the number of hash values stored in the hash table also
increases. This results in longer search times for hash values. To mitigate this issue,
multiple tables or indexes can be created, reducing the time required to compare the hash
key of an incoming file with the existing data in the cloud. This approach also helps address
collision problems. By utilizing multiple indexes or tables, the number of comparison
operations is reduced, thereby decreasing the probability of collisions [4]. The choice of
hash algorithm also plays a crucial role in the deduplication process, as the length of the
key directly impacts collision rates [5]. Based on these considerations, we propose an
algorithm that involves creating a hash table specifically for audio files on the server. This
table consists of multiple indexes, each containing hash keys generated using the MD6
algorithm. MD6 is a cryptographic hash function that employs a Merkle tree-like structure,
enabling efficient parallel computation of hashes for extremely long inputs [6].

2. Audio File Format

There are three main types of audio files format: Uncompressed Audio Formats, Audio
Formats with Lossy Compression, Audio Formats with Lossless Compression [7].

2.1 Uncompressed Audio Formats

Uncompressed audio formats (UAF) consist of real sound waves captured and converted to
digital format without further processing. As a result, uncompressed audio files tend to be
the most accurate but take up a lot of disk space. The Most Common Uncompressed Audio
Formats are:

1- Pulse—Code Modulation (PCM).

2- Waveform Audio File Format (WAV).

3- Audio Interchange File Format (AIFF).

2.2 Audio Formats with Lossy Compression

142

2oy s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

Lossy compression is when some data is lost during the compression process and
compression is important because uncompressed audio takes up lots of disk space. The
Most Common Audio Formats with Lossy Compression are:

1- MPEG-1 Audio Layer 3 (MP3).

2- Advanced Audio Coding (AAC).

3— Windows Media Audio (WMA).

2.3 Audio Formats with Lossless Compression

Opposite lossy compression is lossless compression, a method that reduces an audio file's
size without ANY data loss between the source and the compressed audio files. The Most
Common Audio Formats with Lossless Compression are:

1- Free Lossless Audio Codec (FLAC).

2- Apple Lossless Audio Codec (ALAC).

PCM
Uncompressed -
Audio Formats

Compression

Audio Formats
with Lossl ess
Compression

Figure (1): the most common audio files formats

3. Related Work

In the cloud, File-Level Deduplication generally depends on generating a hash value for the

. Audio Formats
e

incoming file using a hash algorithm and comparing it with the hash values stored in the
cloud. If this value is not existed in the hash table, the file is stored in the cloud and its hash
value in the hash table.

We'll show some of the cloud deduplication techniques:

1- In 2015, Naveen A N and V Ravi, proposed a technique to detect duplicate user's files,
and then the unique data is stored in the server. This technique is characterized by a low
time—complexity, since the process works with small amount of data. However, this
technique is considered the least effective because the final user's data may match files on
the server [§].

2-In 2016, V. Radia and D. Dingh, made a study of data deduplication techniques: file
level, block level, inline post process, source based and target based. The study concluded

that source—based deduplication is best to optimize upload bandwidth and storage space

143

2oy s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

over cloud. Distributed deduplication provides security. Both approaches together provide
reliability [9].

3- In 2016, Parth Shah et al, proposed a technique to detect duplication between files of
users. The technique involves detecting duplication not only within a user's files but also
across files from different users. Once the unique files have been identified. This technique
is considered more effective in saving storage space and has a medium time complexity,
since the process takes place at the level of users’ data and not at the server or client.
However, user files coming into the storage system may match files that already exist [10].
4- In 2017, Ishita Vaidya and Prof. Rajender Nath, propose a technique to generate a hash
key for the file using MDS5 algorithm. Then, this key is compared with the stored keys in
Hadoop [11].

5- In 2018, Manjunath R. Hudagi and Sachin A. Urabinahatti, proposed a technique to
deduplicate data on file-level. This technique is based on building a hash table in the Hbase
that contains the hash keys for the files stored within the system. To process each incoming
file, a hash value is generated using a specific algorithm. This hash value is then compared
with the values stored in the hash table. If there is no match between the generated hash
and any of the stored values, the file is considered unique and subsequently stored in the
system. [12].

6— In 2020, Weigi ZHANG et al. proposed a technique to deduplication in Hadoop. Hash
table was designed in namenode. For every block of file was used hash key using SHA-
512. To determine the uniqueness of each block, the generated hash key is compared to
the existing keys in the system. If there is no match, indicating a unique block, it is stored in
the Hadoop Distributed File System (HDFS). SHA-512 algorithm is used to generate a hash
value with 512 bits, which results in a lower collision rate compared to previous algorithms.
This ensures a higher level of confidence in identifying and storing unique blocks of data.
[13].

7- In 2021, Niteesha Sharma and Dr. A. V Krishna Prasad, proposed a technique to solve
the storage issues and deduplication in Hadoop. A table with hash keys is built in Hbase.
The SHA-256 was used. The process of reading from HBase is faster than Hadoop
Distributed File System (HDFS) [14].

8- In 2021, G. Sujatha and Dr. Jeberson Retna Raj. Proposed an approach to improve the
searching time of duplicated data. dedicated hash tables were designed, hash table for each
digital data type. when a file is received, its hash key is compared with the hash table

corresponding to its type. Thus, the time required for the matching process is reduced

144

2oy s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

compared to previous techniques. However, this technique did not give importance to the
type of hash algorithm [15].

previous studies and their solutions are not sufficient because one of the parameters in the
process of eliminating duplicate data is the time required to implement the technique, which
is mainly related to the number of comparison operations for the hash key of the incoming
file with the stored keys. The fewer the number of operations, the less the execution time.
For any incoming audio file, it will be compared with all stored files (text, images, videos,
audio) if a single indexing table is used. However, it will be compared with all audio files if
multiple indexing tables are used. This requires a large execution time, which increases with
the increase in stored files.

4. Proposed Algorithm

We developed an algorithm to deduplicate audio files. The algorithm consists mainly of two
phases:

1- building the indexing system.

2— deduplication.

4.1 Index System

Index System consist of a table with multi-indexes. nine indexes for the most common
audio files formats and one index for other formats. First index for Pulse-Code Modulation
index. Second index for Advanced Audio Coding. Third index for Audio Interchange File
Format. Fourth index for MPEG-1 Audio Layer3. Fifth index for Advanced Audio Coding.
Sixth index for Windows Media Audio and. Seventh index for Free Lossless Audio Codec.
Eighth index for Apple Lossless Audio Codec. Last index for other formats. Figure (2) show

index system contains examples for hash values:

Hash table
Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9
PCM WAV AIFF MP3 AAC WMA FLAC ALAC other

D42316 A98430 C21093 564903 | 375641 C21093 768F31 C21093 CB7693

56704B 152374 465890 921A45 | D90754 1190F3 498301 290372 B33320

F67983 362198 3210A5 T68F31 | 322902 332098 C56401 561D34 152374

C76098 3902A2 88208A 665573 | B47603 556409 567048 362198 C21093

Figure (2): index system
4.2 Deduplication
In this approach, when a file is uploaded to the cloud storage, the metadata of the audio file
is read to determine its format. Then, a hash key is calculated using the MD6 algorithm.
Based on the format of the file, the file's hash value is compared with the hash values

stored in the index specific to that format. If the hash value already exists in the

145

2oy s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

corresponding index, it indicates that the file is a duplicate and therefore should not be
stored again. However, if the hash value is not found in the index, it means the file is unique
and can be stored in the cloud storage. Additionally, the hash value of the file is added to

the corresponding index for future reference. Figure (3) show the routing of hash values.

Audio(D43674,MP3) Audio(129434, WMA) Audio(658034.ALAC)
~, Hash taBte‘ ¥
PCM WAV AIFF MP3 | AAC WMA FLAC ALAC other

D42316 | A98430 | C21093 | 564903 | 375641 | C21093 | 768F31 C21093 CB7693

56704B | 132374 | 465890 | 921A45 | DS0754 | 1190F3 | 498301 250372 B33320

F67983 | 362198 | 3210A5 | 768F31 | 322902 | 332098 | C356401 361D34 152374

C76098 | 3902A2 | 88208A | 665573 | B47603 | 556409 | 56704B 362198 C21093

CB7693 | 498301 | C56401 | 290372 | AS8430 | A90732 | D42316 A43092 768F31

Figure (3): routing system
4.3 Technique Scheme
Based on the provided information, the stages of the technique can be arranged as follows:
1. File Upload: The user uploads the file to the cloud storage system.
2. Read Metadata: The metadata of the uploaded audio file is read to determine its format.
3. Calculate Hash Key: MD6 algorithm is used to calculate the hash key of the file.
4. Index Comparison: Based on the file format, the calculated hash key is compared with
the hash values stored in the corresponding index.
5. Determine Storage Decision: If the hash value is found in the index, it indicates that the
file is a duplicate and should not be stored. If the hash value is not found, it means the file
is unique and can be stored in the cloud storage.
6. Store File: If the file is determined to be unique, it is stored in the cloud storage system.
7. Update Index: The hash value of the stored file is added to the corresponding index for
future reference.
By following these steps, the system can efficiently determine whether to store the uploaded
file or not based on its uniqueness and avoid storing duplicated audio files. Figure (4) show

the general scheme of the proposed technique.

146

2oy s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

Calculate hash | Getmetadata <—— File from user
using MD6 File of file
format
hash value l
Forward the hash
to the custom index

l (hash, format) yes

If hash is
—_—
Hash table T
no
l l l File not stored
Store hash key in Store file in
hash table the cloud

Figure (4): proposed algorithm

5. Experiments

In this section, we will present multiple models that showcase the outcomes of the proposed
technique and we will compare the results of the proposed algorithm with the algorithm
based on multiple hash table [15]. These models vary in the number of incoming audio files
transmitted to the cloud and the file format. The number of audio files stored in the cloud is
1923, distributed as follows:

1- 800 audio files in MP3 format.

2- 450 audio files in WMA format.

3- 296 audio files in WAV format.

4~ 200 audio files in FLAC format.

5- 177 audio files in AIFF format.

5.1 First Model

The number of incoming audio files transmitted to the cloud is 56 audio files, distributed as
follows:

1- 22 audio files in MP3 format.

2- 17 audio files in WAV format.

3- 11 audio files in WMA format.

4~ 6 audio files in AAC format.

Using the proposed algorithm: The number of comparisons for MP3 audio files is
800*22= 17600, for WMA audio files is 450*17= 7650, for WAV audio files is
296*11=3256, AAC files are unique data, can be stored in the cloud without the need for

comparison processes since the cloud system does not store any AAC audio files.

147

s (s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

Therefore, the total number of comparison operations: 17600+7650+3256= 28506
comparisons.

Using the proposed based on multi—tables [15]: The hash key of any incoming file to the
cloud will be compared with all the hash keys stored in the audio files hash table, and
therefore, the number of comparison operations is 1923*56= 107688.

5.2 Second Model

The number of incoming audio files transmitted to the cloud is 23 audio files, distributed as
follows:

1- 9 audio files in MP3 format.

2- 6 audio files in PCM format.

3- 11 audio files in WMA format.

4- 6 audio files in AAC format.

Using the proposed algorithm: The number of comparisons for MP3 audio files is 800 *9=
7200, for WMA audio files is 450*11=4950, and there isn’t any comparison process for
AAC and PCM format. Therefore, the total number of comparison operations: 7200+4950=
12150 comparisons.

Using the proposed based on multi—-tables [15]: The hash key of any incoming file to the
cloud will be compared with all the hash keys stored in the audio files hash table, and
therefore, the number of comparison operations is 1923*23= 44229.

5.2 Third Model

The number of incoming audio files transmitted to the cloud is 11 audio files, distributed as
follows:

1- 4 audio files in WMA format.

2- 4 audio files in WAV format.

3- 3 audio files in FLAC format.

Using the proposed algorithm: The number of comparisons for WMA audio files is
450*4= 1800, for WAV audio files is 296*4=1184, and for FLAC audio files is 200*3=600,
the total number of comparison operations: 1800+1184+600=3584 comparisons.

Using the proposed based on multi-tables [15]: The hash key of any incoming file to the
cloud will be compared with all the hash keys stored in the audio files hash table, and
therefore, the number of comparison operations is 1923*11= 21153.

5.2 Other Models

In the table (1) some experimental models that differ in the number of files stored in the

cloud, the number of files incoming to the cloud, and the maximum number of required

148

2oy s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

comparison operations. This is achieved using the proposed algorithm and the technique

based on multiple tables.

Table (1): The effectiveness of the proposed algorithm

Experiment Number of Comparisons
Incoming files to the cloud Number of audio files in the cloud
Multi-tables | proposed
Experiment] 2 PCM | MP3 | WAV | PCM | MP3 | WAV | FLAC | WMA 1970
7
12 6 4 123 | 415 76 92 83 17358
MP3 | AIFF | AAC | MP3 | WAV | WMA | AIFF | AAC
Experiment2 | 13 29010 21345
5 4 4 625 | 120 870 | 1700 | 2855
WMV | WMA | AAC | PCM | WMA | FLAC | AIFF | AAC
Experiment3 | 9 12654 668

4 3 2 413 | 210 31 521 19
MP3 | FLAC | WMA | WAV | WMA | AAC | ALAC | AIFF

Experiment4 | 7 5856 332
3 3 1 47 332 | 498 12 87

Based on table (1) the following diagram illustrates the effectiveness of the proposed

algorithm and compares the results obtained by this algorithm with the algorithm based on

multi—table.
number of comparisons
29010

,, 30000
g 21345
2 20000 17338
g 12654
S 10000 4270 . 5856
N 668 332
S — L e
£ 22 13 9 7
=]
=

Incoming files to the cloud

B multi-tables M proposed

Figure (5): the effectiveness of the proposed algorithm
From the figure above, it can be observed that the proposed algorithm is more efficient
compared to the technique based on multiple tables. With the proposed algorithm, each
audio file coming to the cloud will only be compared with other audio files of the same
format.
For further clarification, let's consider that the total number of audio files stored in the cloud
is 4216, distributed as follow:
1- 500 audio files in PCM.
2- 435 audio files in WAV.
3- 1289 audio files in MP3.
4~ 1020 audio files in WMA.

149

2oy s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

5- 440 audio files in AAC.

6- 215 audio files in AIFF.

7- 120 audio files in ALAC.

8- 197 audio files in FLAC.

Figure (6) illustrates the difference in the number of comparison operations between the
proposed algorithm and the algorithm based on multiple tables, in the case of an audio file

of a specific format being received in the cloud.

comparison between algorithms
4500 - 4216 4216 4216 4216 4216 4216 4216 4216

4000 -

3500 -

3000 -

2500 -

2000 -

12801289

1500 10201020

1000 1500500 435 435I I asofaso , M. o7 liss
500 - 120120

PCM WAV MP3 WMA A

AC AIFF ALAC FLAC

number of comparisons

audio format

M stored files ™ multi-tables ™ proposed

Figure (5): the role of proposed algorithm
Using the proposed algorithm, the number of comparison operations does not change based
on the total number of audio files stored in the cloud. Instead, it depends on the number of
files stored for each individual format. For example, let's consider a scenario where there
are 500 MP3 files stored in the cloud and no WAV files. If a WAV file is received, it will be
automatically stored in the cloud without any comparison operations being performed. This
is because there are no other WAV files to compare it with. Figure (6) illustrates the change

in the number of comparisons using the proposed technique.

150

2oy s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

comparison between algorithms

4500 - — — — — — — —
4000 - 4216 4216 4216 4216 4216 4216 4216 4216
3500
3000
2500
2000
1500 -
1000 - w222 1020
500 - 500

0 435 440 245 10 197

PCM WAV MP3 WMA AAC AIFF ALAC FLAC

number of comparisons

audio format
s stored files e multi-tables proposed

Figure (6): the change in the number of comparisons
6. Results and Discussion
Using the proposed technique based on multi—-tables, all hash keys of audio files are stored
together, and the key of each file needs to be compared with the keys of all other files in
order to find a match. This results in a high time complexity, and the time complexity
increases as the number of audio files increases.
The proposed algorithm divides the table of audio files into 9 separate indexes based on file
format. Each index contains only the keys of the files with that specific format. When a new
audio file is uploaded, it is assigned a key and stored in the corresponding index based on
its format. This means that when searching for a specific file, the comparison is only made
within the index that contains files of the same format, significantly reducing the number of
comparisons needed. that means that the proposed algorithm eliminates the need for
unnecessary comparisons, resulting in improved efficiency and faster processing times when
handling different audio formats in the cloud.
By reducing the number of comparison operations, the proposed technique not only speeds
up the search process but also minimizes the probability of data collisions. Using the
proposed technique based on multi—-tables, all files are compared with each other, there is a
higher probability of two files having similar keys, resulting in collisions. However, with the
proposed technique, the chances of collisions are reduced since the comparison is limited to

files within the same format index.

7. Conclusion

With the increasing volume of data received by the cloud system, which includes duplicate
data, it is not enough to design techniques that only focus on efficient duplicate detection. In

the face of this massive amount of data, it is necessary to minimize the time required to

151

2oy s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

process duplicate data as much as possible. In this research, we have built a multi—-indexing
system based on metadata (file format) to reduce the number of comparisons and thus
accelerate the search process for the partition key. Reducing the number of comparisons
also reduces the probability of collisions between partition keys. In this research, we also
used the MD6 algorithm to calculate the hash value for the files, which produces a 512 -bit
key. The longer the key length, the lower the collision rate. In the future, it is possible to

build a duplicate data elimination system that relies on multiple tables and multiple indexes
to minimize the time complexity as much as possible.

8. References

[11 1. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, S. U. Khan, “The rise of
“big data” on cloud computing: Review and open research issue”, Information Systems 47,
pp. 98-115, 2015.

[2] N. Sharma, A. V. Krishna Prasad, V. Kakulapati, “Data Deduplication Techniques for Big
Data Storage Systems”, International Journal of Innovative Technology and Exploring
Engineering (IJITEE), ISSN: 2278-3075, Volume-8§ Issue-10, pp. 1145-1150, 2019.

[3] M. Muniswamaiah, T. Agerwala, C. Tappert, “BIG DATA IN CLOUD COMPUTING
REVIEW AND OPPORTUNITIES?”, International Journal of Computer Science & Information
Technology (IJCSIT), Vol. 11, No. 4, pp. 43-57, 2019.

[4] V. Schmitt, J. Jordaan, “Establishing the Validity of Md5 and Sha-1 Hashing in Digital
Forensic Practice in Light of Recent Research Demonstrating Cryptographic Weaknesses in
these Algorithms”, International Journal of Computer Applications, Volume 68— No.23, pp.
40-43, 2013.

[5] M. Eichlseder, F. Mendel, M. Schl"affer, “Branching Heuristics in Differential Collision
Search with Applications to SHA-512”, Conference: Fast Software Encryption — FSE 2014,
P. 16.

[6] Ronald L. Rivest, “The MD6 hash function A proposal to NIST for SHA-3”, Computer
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139, P. 237, 2008.

[7]1 Audio file format, Audio file format — Wikipedia, 2023.

[8] Naveen A N and V Ravi, “Client Side Deduplication Scheme for Secured Data Storage in
Cloud Environments”, International Journal of Engineering Research & Technology (IJERT),
Vol. 4 Issue 05, pp. 1465-1467, 2015.

[9] V. S. R. and D. K. Singh, “Secure Deduplication Techniques: A Study,” Int. J. Comput.
Appl., vol. 137, no. 8, pp. 41-43, 2016, doi: 10.5120/ijca2016908874.

152

https://en.wikipedia.org/wiki/Audio_file_format

2oy s 1393 e o] 2023 — 1 saali— 1 alaal) — Lualid) Ly gl) daslad) Anse

[10]] Parth. S, Amit. G, Sandipkumar. P, Priteshkumar. P,” Efficient Cross User Client Side
Data Deduplication in Hadoop”, Journal of Computers, DOI: 10.17706/jcp.12.4, pp. 362-
370, 2016.

[11] i. Vaidya, Prof. R. Nath, “An Improved De-Duplication Technique for Small Files in
Hadoop”, International Research Journal of Engineering and Technology (IRJET), Volume:
04 Issue: 07, pp. 2040-2045, 2017.

[12] Manjunath R. Hudagi and Sachin A. Urabinahatti, “EFFICIENT DEDUPLICATION
USING HADOOP?”, International Journal of Latest Trends in Engineering and Technology,
Vol. (10) Issue(3), pp.236-238, 2018.

[13] w. Zhang, B. Shao, G. Bian, Q. He, “Research on Multifeature Data Routing Strategy in
Deduplication”, Scientific Programming, Volume 2020, Article ID 8869237, P. 11, 2-020.
[14] N. Sharma, Dr. A. V Krishna Prasad, “File—level Deduplication by using text files — Hive
integration”, International Conference on Computer Communication and Informatics (ICCCI —
2021), P. 6, 2021.

[15] G. Sujatha, Dr. Jeberson Retna Raj, “Improving the Efficiency of Deduplication Process
by Dedicated Hash Table for each Digital Data Type in Cloud Storage System”, Webology,
Volume 18, Special Issue on Atrtificial Intelligence in Cloud Computing, pp. 288-301, 2021.

153

