2 (s a Laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

U:UAI\S‘ u'°' a,,ﬁyd\ cilalall dlled 8 5a clily ¢lad) Z\,uw\p avanal
o)

e s "o Jlee a0
tuaidlal)

Galis dllgis gh el bl s Ll 3 Lage Lins 5) <) bl IS
o ylsd axid AISEA) 030 Jad . Lginllaag Lghlaly il aais e 55 Lo cAaijas
Ge) A Dlad) B AR UL 5k ae ST L clalll JIFs) milie il J5aY)
o Lo 2y cddie clald J5aY) #lite gy of (Ko WS L daladly cnll Gl
Gigm Dllenl il ~lidl Jola o) LSS Lyl 2 lad) Joba @laty (sily sl
.eal.m:
A geall bl i e Al Caldl (gas e 8))Sa iy o) 208 a3t (Al o0 b
pd oo Eaall o) Jile) ds gad) duml) Caag L gl gl Glan 8 5y S
ol VL Goledl o3a aacal Lsaamia uleds JR1 o ol 3pk o IR
dal e Gued UG5 Bosia Lulgd JFRY) oo ey Jillg - cageall Cale daga
lalide s g (MD6 Gaajlss alaiis) oy cadliad Ergom Lllainl] L 5ams dipa
Ly 512 Jsha

— dngal clid — MD6 — @il Jen — 5y ,Sal bl sl cdalizad) el
.L._?.:\\A.«A\ U:\);ﬂ\

g clen (dialal) Al daalall cduaig 4S (Cogalal) duvia acd U 1
Ay (e (AlyeSlls ALK Auigh AUS cCudgally Y o) deavia addyi€<s AU 2

184

d s . laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

Designing an Efficient Deduplication Algorithm

for Audio Files in Cloud Storage

Dr. Ammar Zakzouk! Eng. Hasan Hasan’

ABSTRACT:

Duplicate data poses a significant challenge in big data storage systems
as it consumes storage space, affecting data organization,
management, and processing. To solve this problem, hash algorithms
are used to generate hash keys for files. However, as the amount of
data stored in the cloud increases, the search and matching process
takes longer. Additionally, hash keys can match different files, known
as collisions, which are related to the length of the hash key. The longer
the key, the less likely collisions will occur.

In this paper, we present a technique for eliminating duplicate data at
the file level to reduce storage of duplicate audio data in the cloud
storage system. The proposed technique aims to reduce the search
time for hash values by creating a reduction table with multiple indexes.
These indexes are designed based on the audio file format. Therefore,
the hash table includes multiple indexes, each for a specific format. To
minimize the probability of collisions, MD6 algorithm is used, which

produces a key with a length of 512 bits.

KEYWORDS: Deduplication — Hash Table — MD6 — Audio Files — Cloud
Storage.

1 Professor, Computer Engineering Department, Engineering Faculty, Al-Wataniya Private
University, Hama, Syria.
2 Ph.D. Student, Automatic Control and Computers Engineering Department, Mechanical and

Electrical Engineering Faculty, Al-Baath University, Homs, Syria.

185

2 (s a laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

1. Introduction

The cloud storage system handles a large volume of data in various
formats (audio, text, video, images) from different sources. Some of data
are duplicated, which is considered unnecessary [1]. To optimize the
storage space and improve the performance of the cloud system in terms
of storage and processing, techniques for eliminating duplicate data have
been employed. There are two types of duplicate data detection methods:
source—based detection (client-side) and target-based detection (server—
side) [2]. In general, the deduplication process involves generating a hash
key for each file and comparing it with the hash keys of other files to
determine if it should be stored. A hash table is used to store all the hash
keys of the stored files [3]. However, as the size of the data stored in the
cloud storage system increases, the number of hash values stored in the
hash table also increases. This results in longer search times for hash
values. To mitigate this issue, multiple tables or indexes can be created,
reducing the time required for comparing the hash key of an incoming file
with the existing data in the cloud. This approach also helps address
collision problems. By utilizing multiple indexes or tables, the number of
comparison operations is reduced, thereby decreasing the probability of
collisions [4]. The choice of hash algorithm also plays a crucial role in the
deduplication process, as the length of the key directly impacts collision
rates [5]. Based on these considerations, we propose an algorithm that
involves creating a hash table specifically for audio files on the server.
This table consists of multiple indexes, each containing hash keys
generated using the MD6 algorithm. MD6 is a cryptographic hash function
that employs a Merkle tree-like structure, enabling efficient parallel

computation of hashes for extremely long inputs [6].

186

2 (s a laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

2. Audio File Formats

There are three main types of audio files formats: Uncompressed Audio
Formats, Audio Formats with Lossy Compression, Audio Formats with
Lossless Compression [7].

2.1 Uncompressed Audio Formats

Uncompressed audio formats (UAF) consist of real sound waves captured
and converted to digital format without further processing. Although,
uncompressed audio files tend to be the most accurate but take up a lot
of disk space. The Most Common Uncompressed Audio Formats are:

1 —Pulse-Code Modulation (PCM).

2 -Waveform Audio File Format (WAV).

3—- Audio Interchange File Format (AIFF).

2.2 Audio Formats with Lossy Compression

Lossy compression is characterized by some data loss during the
compression process. However, compression is vital because
uncompressed audio takes up a considerable amount of the disk capacity.
The Most Common Audio Formats with Lossy Compression are:

1 -MPEG-1 Audio Layer 3 (MP3).

2 —Advanced Audio Coding (AAC).

3— Windows Media Audio (WMA).

2.3 Audio Formats with Lossless Compression

Opposite lossy compression is lossless compression, a method that
reduces an audio file's size without ANY data loss between the source
and the compressed audio files. The Most Common Audio Formats with
Lossless Compression are:

1 —Free Lossless Audio Codec (FLAC).

2—- Apple Lossless Audio Codec (ALAC).

187

2 (s a Laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

Uncompressed
Audio Formats

Audio Formats
with Lossy
Compression

Audio Formats
with Lossless

Compression <

Figure (1): the most common audio files formats

3. Related Work

In the cloud, File—Level Deduplication generally depends on generating a

hash value for the incoming file using a hash algorithm and comparing it
with the hash values already stored in the cloud. If this value doesn’t exist
in the hash table, the file is stored in the cloud and its hash value in the
hash table.

We'll show some of the cloud deduplication techniques:

1 =In 2015, Naveen A N and V Ravi, proposed a technique to detect
duplicate user's files, and then the unique data is stored in the server.
This technique is characterized by a low time-complexity, since the
process works with small amount of data. However, this technique is
considered the least effective because the final user's data may match
files on the server.[§]

2 —-In 2016, V. Radia and D. Dingh, made a study of data deduplication
techniques: file level, block level, inline post process, source based and

target based. The study concluded that source—based deduplication

188

2 (s a laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

technique is the best as it optimizes the uploading bandwidth and storage
space over cloud. Distributed deduplication provides security. Both
approaches together provide reliability.[9]

3 -In 2016, Parth Shah et al, proposed a technique to detect duplication
between files of users. The technique involves detecting duplication not
only within a user's files but also across files from different users. Once
the unique files have been identified. This technique is considered more
effective in saving storage space and has a medium time complexity since
the process takes place at the level of users’ data and not at the server
or client. However, user files coming into the storage system may match
files that already exist.[10]

4 —-In 2017, Ishita Vaidya and Prof. Rajender Nath, proposed a technique
to generate a hash key for the file using MD5 algorithm. Then, this key is
compared with the stored keys in Hadoop .[11]

5 -In 2018, Manjunath R. Hudagi and Sachin A. Urabinahatti, proposed
a technique to deduplicate data on file—level. This technique is based on
building a hash table in the Hbase that contains the hash keys for the files
stored within the system. To process each incoming file, a hash value is
generated using a specific algorithm. This hash value is then compared
with the values stored in the hash table. If there is no match between the
generated hash and any of the stored values, the file is considered unique
and subsequently stored in the system.[12]

6 —In 2020, Weigi ZHANG et al. proposed a technique for deduplication
in Hadoop. Hash table was designed in namenode. For every block of
files, a hash key using SHA-512 was used. To determine the uniqueness
of each block, the generated hash key is compared to the existing keys in
the system. If there is no match, it indicates a unique block, which gets
stored in the Hadoop Distributed File System (HDFS). SHA-512 algorithm

189

2 (s a laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

is used to generate a hash value with 512 bits, which results in a lower
collision rate compared to previous algorithms. This ensures a higher level
of confidence in identifying and storing unique blocks of data .[13]

7 —=In 2021, Niteesha Sharma and Dr. A. V Krishna Prasad, proposed a
technique to solve the storage issues and deduplication in Hadoop. A
table with hash keys is built in Hbase and SHA-256 is used. The process
of reading from HBase is faster than Hadoop Distributed File System
(HDFS).[14]

8 —In 2021, G. Sujatha and Dr. Jeberson Retna Raj. Proposed approach
to improve the searching time of duplicated data. Dedicated hash tables
were designed, each of which is used for each digital data type. When a
file is received, its hash key is compared with the hash table corresponding
to its type. Thus, the time required for the matching process is reduced
compared to previous techniques. However, this technique did not give
importance to the type of hash algorithm.[15]

Thus, the previous studies and their solutions as presented above are not
sufficient because one of the parameters in the process of eliminating
duplicate data is the time required to implement the technique, which is
mainly related to the number of comparison operations for the hash key
of the incoming file with the stored keys. The fewer the number of
operations, the less the execution time. For any incoming audio file, it will
be compared with all stored files (text, images, videos, audio) if a single
indexing table is used. However, it will be compared with all audio files if
multiple indexing tables are used. This requires a long execution time,
which increases with the increase in the stored files.

4. Proposed Algorithm

We developed an algorithm to deduplicate audio files. The algorithm

consists mainly of two phases:

190

2 (s a laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

1- building the indexing system.

2— deduplication.

4.1 Index System

Index System consists of a table with multi-indexes. Nine indexes for the
most common audio files formats and one index for other formats. The
first index is for Pulse-Code Modulation index. The second index is for
Advanced Audio Coding. The third index is for Audio Interchange File
Format. The fourth index is for MPEG—1 Audio Layer3. The fifth index is
for Advanced Audio Coding. The sixth index is for Windows Media Audio
and. The seventh index is for Free Lossless Audio Codec. The eighth
index is for Apple Lossless Audio Codec. The last index is for other
formats. Figure (2) shows index system and it contains examples for hash

values:

Hash table

Index1 | Index2 | Index3 | Index4 | Index5 | Index6 | Index7 | Index8 | Index9
PCM WAV AIFF MP3 | AAC WMA FLAC ALAC other
D42316 | A98430 | C21093 | 564903 | 375641 | C21093 | 768F31 | C21093 | CB7693
56704B | 152374 | 463890 | 921A45 | D90754 | 1190F3 | 498301 | 290372 | B33320
F67983 | 362198 | 3210A5 | 768F31 | 322902 | 332098 | C36401 | 561D34 | 152374
C76098 | 3902A2 | B8208A | 665573 |B47603 | 556409 | S56704B | 362198 | C21093

Figure (2): index system
4.2 Deduplication
In this approach, when a file is uploaded to the cloud storage, the
metadata of the audio file is read to determine its format. Then, a hash
key is calculated using the MD6 algorithm. Based on the format of the file,
the file's hash value is compared with the hash values stored in the index
specific to that format. If the hash value already exists in the corresponding

index, it indicates that the file is a duplicate and therefore should not be

191

d s . laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

stored again. However, if the hash value is not found in the index, it means
the file is unique and can be stored in the cloud storage. Additionally, the
hash value of the file is added to the corresponding index for future

reference. Figure (3) shows the routing of hash values.

Audio(D43674,MP3) Audio(129434,WIMA) Audio(658034,ALAC)
~ Hash taaﬁ‘ ’
PCM WAV AIFF MP3 | AAC WMA FLAC ALAC other

D42316 | AS8430 | C21093 | 564903 | 375641 | C21093 | 768F31 | C21093 CB7693
567048 | 152374 | 463890 | 921A45 | D90754 | 1190F3 | 498301 290372 B33320
F67983 | 362198 | 3210A5 | 768F31 | 322902 | 332098 | C56401 | 561D34 152374
C76098 | 3902A2 | 88208A | 665373 | B47603 | 536409 | 56704B | 362198 C21093
CB7693 | 498301 | C56401 | 290372 | AS8430 | A90732 | D42316 | A43092 768F31

Figure (3): routing system
4.3 Technique Scheme
Based on the provided information, the stages of the technique can be
arranged as follows:
1 .File Upload: The user uploads the file to the cloud storage system.
2 .Read Metadata: The metadata of the uploaded audio file is read to
determine its format.
3 .Calculate Hash Key: MD6 algorithm is used to calculate the hash key
of the file.
4 .Index Comparison: Based on the file format, the calculated hash key is
compared with the hash values stored in the corresponding index.
5 .Determine Storage Decision: If the hash value is found in the index, it
indicates that the file is a duplicate and should not be stored. If the hash
value is not found, it means the file is unique and can be stored in the

cloud storage.

192

2 (s a laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

6 .File Storing: If the file is determined to be unique, it is stored in the
cloud storage system.
7 .Index Updating: The hash value of the stored file is added to the
corresponding index for future reference.
By following these steps, the system can efficiently determine whether to
store the uploaded file or not based on its uniqueness and thus, it avoids
storing duplicated audio files. Figure (4) shows the general scheme of the
proposed technique.

Calculate hash |l | Getmetadata <— File from user

using MD6 File of file

format
hash value l

Forward the hash
to the custom index

l (hash, format) ves
If hash is

—_—
Hash table existed
no l

l l File not stored

Store hash key in Store file in
hash table the cloud

Figure (4): proposed algorithm

5. Experiments

In this section, we will present multiple models that showcase the
outcomes of the proposed technique and we will compare the results of
the proposed algorithm with the algorithm based on multiple hash table
[15]. These models vary in the number of incoming audio files transmitted
to the cloud and the file format. The number of audio files stored in the
cloud is 1923, distributed as follows:

1- 800 audio files in MP3 format.

2— 450 audio files in WMA format.

3- 296 audio files in WAV format.

193

2 (s a laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

4- 200 audio files in FLAC format.

5- 177 audio files in AIFF format.

5.1 First Model

The number of incoming audio files transmitted to the cloud is 56 audio
files, distributed as follows:

1- 22 audio files in MP3 format.

2- 17 audio files in WAV format.

3- 11 audio files in WMA format.

4~ 6 audio files in AAC format.

Using the proposed algorithm: The number of comparisons for MP3
audio files is 800*22= 17600, for WMA audio files is 450*17= 7650, for
WAV audio files is 296*11=3256, AAC files are unique data, and can be
stored in the cloud without the need for comparison processes since the
cloud system does not store any AAC audio files. Therefore, the total
number of comparison operations: 17600+7650+3256= 28506
comparisons.

Using the proposed based on multi—tables [15]: The hash key of any
incoming file to the cloud will be compared with all the hash keys stored
in the audio files hash table, and therefore, the number of comparison
operations is 1923*56= 107688.

5.2 Second Model

The number of incoming audio files transmitted to the cloud is 23 audio
files, distributed as follows:

1- 9 audio files in MP3 format.

2- 6 audio files in PCM format.

3- 11 audio files in WMA format.

4~ 6 audio files in AAC format.

194

2 (s a laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

Using the proposed algorithm: The number of comparisons for MP3
audio files is 800*9= 7200, for WMA audio files is 450*11=4950, and
there isn’t a comparison process for AAC and PCM format. Therefore, the
total number of comparison operations: 7200+4950= 12150 comparisons.
Using the proposed based on multi-tables [15]: The hash key of any
incoming file to the cloud will be compared with all the hash keys stored
in the audio files hash table, and therefore, the number of comparison
operations is 1923*23= 44229.

5.2 Third Model

The number of incoming audio files transmitted to the cloud is 11 audio
files, distributed as follows:

1- 4 audio files in WMA format.

2- 4 audio files in WAV format.

3- 3 audio files in FLAC format.

Using the proposed algorithm: The number of comparisons for WMA
audio files is 450*4= 1800, for WAV audio files is 296*4=1184, and for
FLAC audio files is 200*3=600, the total number of comparison
operations: 1800+1184+600=3584 comparisons.

Using the proposed based on multi-tables [15]: The hash key of any
incoming file to the cloud will be compared with all the hash keys stored
in the audio files hash table, and therefore, the number of comparison
operations is 1923*11= 21153.

5.2 Other Models

Table (1) illustrates experimental models that differ in the number of files
stored in the cloud, the number of files incoming to the cloud, and the
maximum number of required comparison operations. This is achieved

using the proposed algorithm and the technique based on multiple tables.

195

2 (s a Laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

Table (1): The effectiveness of the proposed algorithm

Number of Comparisons
Experiment Incoming files to the
Number of audio files in the cloud Multi- proposed
cloud
tables
Experiment] 2 PCM | MP3 WAV | PCM | MP3 | WAV | FLAC | WMA 4970
12 6 4 123 415 76 92 83 17358
MP3 | AIFF [AAC | MP3 | WAV [WMA | AIFF | AAC
Experiment2 | 13 29010 | 21345
5 4 4 625 120 870 1700 | 2855
WMV | WMA | AAC | PCM | WMA | FLAC | AIFF | AAC
Experiment3 | 9 12654 | 668
4 3 2 413 210 31 521 19
MP3 | FLAC | WMA | WAV | WMA | AAC | ALAC | AIFF
Experiment4 | 7 5856 332
3 3 1 47 332 498 12 87

Based on table (1) the following diagram illustrates the effectiveness of
the proposed algorithm and compares the results obtained by this

algorithm with the algorithm based on multi-table.

number of comparisons
30000 29010
w
§ 25000 21345
§ 20000 17358
£
8 15000 12654
k]
5 10000
o 5856
= 4270
5 5000
c - 668 332
0 — —
22 13 9 7
Incoming files to the cloud
B multi-tables ™ proposed

Figure (5): the effectiveness of the proposed algorithm
From the figure above, it can be observed that the proposed algorithm is
more efficient compared to the technique based on multiple tables. With
the proposed algorithm, each audio file coming to the cloud will only be

compared with other audio files of the same format .

196

2 (s a Laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

For further clarification, let's consider that the total number of audio files
stored in the cloud is:

1- 500 audio files in PCM.

2- 435 audio files in WAV.

3~ 1289 audio files in MP3.

4~ 1020 audio files in WMA.

5- 440 audio files in AAC.

6- 215 audio files in AIFF.

7—- 120 audio files in ALAC.

8- 197 audio files in FLAC.

Figure (6) illustrates the difference in the number of comparison operations
between the proposed algorithm and the algorithm based on multiple

tables, in the case of an audio file of a specific format being received in

the cloud.
comparison between algorithms
4500 - 4216 4216 4216 4216 4216 4216 4216 4216
g 4000 -
2 3500 1
s 3000 A
£ 2500
S 2000 A
(5]
%5 1500 A 1283289 5, 8 020
£ 1000 4500500
% 288] 435 435' I aa0f440,, B 1c o W 1o Mo7
£ [| |
::, 0 J - || | - |
PCM WAV MP3 WMA AAC AIFF ALAC FLAC
audio format
M stored files M multi-tables proposed

Figure (5): the role of proposed algorithm
Using the proposed algorithm, the number of comparison operations does
not change based on the total number of audio files stored in the cloud.
Instead, it depends on the number of files stored for each individual format.

For example, let's consider a scenario where there are 500 MP3 files

197

2 (s a Laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

stored in the cloud and no WAV files. If a WAV file is received, it will be
automatically stored in the cloud without any comparison operations being
performed. This is because there are no other WAV files to compare it
with. Figure (6) illustrates the change in the number of comparisons using

the proposed technique.

comparison between algorithms

4500
4000
3500
3000
2500
2000
1500
1000

500

el Pl — P Gr—l P —l P —l P G— P —l e 1716

1289 1020
500 435 440

215 120 197
PCM WAV MP3 WMA AAC AIFF ALAC FLAC

number of comparisons

audio format
s stOred files e multi-tables proposed

Figure (6): the change in the number of comparisons

6. Results and Discussion

Using the proposed technique based on multi-tables, all hash keys of
audio files are stored together, and the key of each file needs to be
compared with the keys of all other files in order to find a match. This
results in a high time complexity, and the time complexity increases as
the number of audio files increases .

The proposed algorithm divides the table of audio files into 9 separate
indexes based on file format. Each index contains only the keys of the
files with that specific format. When a new audio file is uploaded, it is
assigned a key and stored in the corresponding index based on its format.
This means that when searching for a specific file, the comparison is only

made within the index that contains files of the same format, significantly

198

2 (s a laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

reducing the number of comparisons needed. That means that the
proposed algorithm eliminates the need for unnecessary comparisons,
resulting in improved efficiency and faster processing times when handling
different audio formats in the cloud.

By reducing the number of comparison operations, the proposed technique
not only speeds up the search process but also minimizes the probability
of data collisions. Using the proposed technique based on multi-tables,
all files are compared with each other, there is a higher probability of two
files having similar keys, resulting in collisions. However, with the
proposed technique, the chances of collisions are reduced since the
comparison is limited to files within the same format index.

7. Conclusion

With the increasing volume of data received by the cloud system, which
includes duplicate data, it is not enough to design techniques that only
focus on efficient duplicate detection. In the face of this massive amount
of data, it is necessary to minimize the time required to process duplicate
data as much as possible. In this research, we have built a multi-indexing
system based on metadata (file format) to reduce the number of
comparisons and thus accelerate the search process for the partition key.
Reducing the number of comparisons also reduces the probability of
collisions between partition keys. In this research, we also used the MD6
algorithm to calculate the hash value for the files, which produces a 512-
bit key. The longer the key length, the lower the collision rate. In the
future, it is possible to build a duplicate data elimination system that relies

on multiple tables and multiple indexes to minimize the time complexity as

much as possible.

199

2 (s a laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

8. References

1. T.Hashem, I. Yagoob, N. B. Anuar, S. Mokhtar, A. Gani, S. U. Khan,
“The rise of “big data” on cloud computing: Review and open research
issue”, Information Systems 47, pp. 98-115, 2015.

2. N. Sharma, A. V. Krishna Prasad, V. Kakulapati, “Data Deduplication
Techniques for Big Data Storage Systems”, International Journal of
Innovative Technology and Exploring Engineering (IJITEE), ISSN:
2278-3075, Volume-8 Issue-10, pp. 1145-1150, 2019.

3. M. Muniswamaiah, T. Agerwala, C. Tappert, “BIG DATA IN CLOUD
COMPUTING REVIEW AND OPPORTUNITIES?, International Journal
of Computer Science & Information Technology (IJCSIT), Vol. 11, No.
4, pp. 43-57, 2019.

4. V. Schmitt, J. Jordaan, “Establishing the Validity of Md5 and Sha-1
Hashing in Digital Forensic Practice in Light of Recent Research
Demonstrating Cryptographic Weaknesses in these Algorithms”,
International Journal of Computer Applications, Volume 68— No.23,
pp. 40-43, 2013.

5. M. Eichlseder, F. Mendel, M. Schl affer, “Branching Heuristics in
Differential Collision Search with Applications to SHA-512",
Conference: Fast Software Encryption — FSE 2014, P. 16.

6. Ronald L. Rivest, “The MD6 hash function A proposal to NIST for
SHA-3”, Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA (02139, P.
237, 2008.

7. Audio file format, Audio file format - Wikipedia, 2023.

Naveen A N and V Ravi, “Client Side Deduplication Scheme for

Secured Data Storage in Cloud Environments”, International Journal

200

https://en.wikipedia.org/wiki/Audio_file_format

2

d s . laghs slee .a.f 2023- 1 sl = 1 alaall — Laldd) dibgl) dnalad) daa

10.

11.

12.

13.

14.

15.

of Engineering Research & Technology (IJERT), Vol. 4 Issue 05, pp.
1465-1467, 2015.

V. S. R. and D. K. Singh, “Secure Deduplication Techniques: A
Study,” Int. J. Comput. Appl., vol. 137, no. 8§, pp. 41-43, 2016, doi:
10.5120/ijca2016908874.

Parth. S, Amit. G, Sandipkumar. P, Priteshkumar. P,” Efficient Cross
User Client Side Data Deduplication in Hadoop”, Journal of Computers,
DOI: 10.17706/icp-12.4, pp. 362-370, 2016.

I. Vaidya, Prof. R. Nath, “An Improved De—-Duplication Technique for
Small Files in Hadoop”, International Research Journal of Engineering
and Technology (IRJET), Volume: 04 lIssue: 07, pp. 2040-2045,
2017.

Manjunath R. Hudagi and Sachin A. Urabinahatti, “EFFICIENT
DEDUPLICATION USING HADOOP?”, International Journal of Latest
Trends in Engineering and Technology, Vol. (10) Issue (3), pp.236-
238, 2018.

w. Zhang, B. Shao, G. Bian, Q. He, “Research on Multifeature Data
Routing Strategy in Deduplication”, Scientific Programming, Volume
2020, Article ID 8869237, P. 11, 2-020.

N. Sharma, Dr. A. V Krishna Prasad, “File-level Deduplication by
using text files — Hive integration”, International Conference on
Computer Communication and Informatics (ICCCI -2021), P. 6, 2021.
G. Sujatha, Dr. Jeberson Retna Raj, “Improving the Efficiency of
Deduplication Process by Dedicated Hash Table for each Digital Data
Type in Cloud Storage System”, Webology, Volume 18, Special Issue
on Atrtificial Intelligence in Cloud Computing, pp. 288-301, 2021.

201

