جهاز البلازما المحرقية الكثيفة وسيلة وإعدة لترسيب الأفلام الرقيقة – دراسة عددية لمميزات حزمة أيونات صادرة عن جهاز بلازما محرقية كثيفة

أ.د. وليد صهيوني¹ د. علاء ناصيف²

الملخص:

تمّ في هذا البحث إجراء دراسة نظرية لإمكانية استخدام أجهزة البلازما المحرقية الكثيفة كإحدى طرق ترسيب الأفلام الرقيقة وذلك بالاستفادة من تميّز هذه الأجهزة بتشكل قبضة البلازما التي تعتبر منبع أيوني. تمّ إيجاد عدد وطاقة أيونات الآزوت الناتجة عن جهاز البلازما المحرقية الكثيفة NX2 وتغيراتها مع تغيّر ضغط الغاز . كما تمّ إيجاد طيف طاقة الأيونات الناتجة وتحديد قيمة ضغط غاز الآزوت التي يتحقق عندها أعلى طاقة يحملها أيون الآزوت وحساب عدد الأيونات الواصلة إلى ركيزة التيتانيوم من أجل الحصول على الفلم الرقيق TIN.

الكلمات المفتاحية: قبضة البلازما، حزمة الأيونات، الأفلام الرقيقة

¹ أستاذ، رئيس وحدة أبحاث البلازما، قسم الفيزياء، جامعة البعث، حمص، سوريا

² دكتور، كلية الصيدلة، الجامعة الوطنية الخاصة، حماه، سوريا

Dense plasma focus device as a promising method for thin film deposition – a numerical study of Ion beam features from Dense Plasma Focus device

Prof. Dr. Walid Sahyouni¹ Dr. Alaa Nassif²

ABSTRACT:

In this research, a theoretical study was conducted of the possibility of using dense plasma focus devices as one of the thin film deposition methods, by taking advantage of the distinctiveness of these devices in the formation of the plasma pinch, which is an ion source. The number and energy of nitrogen ions produced by the NX2 dense plasma focus device and their changes with the change in gas pressure were found. The energy spectrum of the resulting ions was also found, the nitrogen gas pressure value was determined at which the highest energy carried by the nitrogen ion was achieved, and the number of ions reaching the titanium substrate was calculated in order to obtain the TIN thin film.

KEYWORDS: plasma pinch, lons beam, Thin films.

¹ Professor, Head of Plasma Research Unit, Department of Physics, Al-Baath University, Homs, Syria

² Doctor, Faculty of Pharmacy, Al-Wataniya Private University, Hama, Syria

مقدمة:

من المعلوم أن الأفلام الرقيقة عبارة عن طبقات من المواد متوضعة على مواد أخرى بسماكات من بضعة نانو مترات إلى عدة ميكرو مترات، تم تطوير الأفلام الرقيقة لاستخدامها في تطبيقات مختلفة، تعتبر الأفلام الرقيقة النانوية (Nanocomposite thin films) ذات الصلابة العالية نوع جديد من الأفلام الرقيقة تُظهر خصائص ميكانيكية والكترونية وبصرية ومغناطيسية ممتازة وذلك بسبب اعتمادها على الحجم والتركيب البلوري للفلم الرقيق [1]. يتم استخدام عدد كبير من تقنيات الترسيب من أجل الحصول على الأفلام الرقيقة يمكن وضع هذه التقنيات في فئتين أساسيتين: الترسيب الفيزيائي للبخار ((Physical Vapour Deposition (CVD) الترسيب الكيميائي للبخار ((Chemical Vapour Deposition (CVD)

البلازما المحرقية الكثيفة: تقنية ترسيب ممكنة:

تم تطوير أجهزة البلازما المحرقية الكثيفة ((Dense plasma focus (DPF)) في الأساس كأجهزة اندماج نووي ولكن تم الاهتمام لاحقاً بهذه الأجهزة كمصدر وفير لعدد من الإصدارات الإشعاعية مثل النيوترونات والأشعة السينية والحزم الإلكترونية والأيونية [3,2]. يتم في جهاز البلازما المحرقية الكثيفة توليد وتسريع وضغط البلازما بواسطة القوى المغناطيسية حيث ينتج في نهاية عملية التمحرق (focusing) عمود من البلازما (pinch) يدوم لفترة من الزمن ($^{7}s^{-0}$) نهاية عملية التمحرق (focusing) عمود من البلازما (pinch) يدوم لفترة من الزمن ($^{7}s^{-0}$) حرارته (X - 1) وكثافته ($^{7}m^{-3}$) عادر على إحداث إندماج نووي multi) تجعل هذه الميزات قبضة البلازما مصدر للإشعاع المتعدد (–multi multi) يعمل وكثافته ($^{1}m^{-3}$) قادر على إحداث إندماج نووي multi) يعمل مصدر للإشعاع المتعدد (–multi) أستخدامه في العديد من التطبيقات مثل التصوير الشعاعي والطباعة الالكترونية [-7] كما يمكن استخدامه في العديد من التطبيقات مثل التصوير الشعاعي والطباعة الالكترونية المواد وصناعة استخدام حزم الالكترونات والأيونات ذات الطاقة العالية الصادرة عنه في معالجة المواد وصناعة الأفلام الرقيقة [-1].

يعتمد نوع الإشعاع الصادر من جهاز البلازما المحرقية الكثيفة على نوع الغاز المستخدم في تشكيل البلازما وعلى مادة الأقطاب داخل حجرة التفريغ فعلى سبيل المثال تم استخدام جهاز البلازما المحرقية الكثيفة في زرع (implantation) أيونات النتروجين على الفولاذ [15] والتيتانيوم [16]. يوضح الشكل (1) مخطط جهاز البلازما المحرقية الكثيفة حيث تكون العينات المراد معالجتها متموضعة على حامل مقابل الحزم الأيونية المتدفقة من المصعد [1].

الشكل (1): مخطط جهاز البلازما المحرقية الكثيفة المستخدم في ترسيب الأفلام الرقيقة [1] ميزات استخدام البلازما المحرقية الكثيفة في عملية ترسيب الأفلام الرقيقة [1]:

أظهرت نتائج دراسة الأفلام الرقيقة التي تم ترسيبها باستخدام البلازما المحرقية الكثيفة عن وجود تغييرات بنيوية أفضل من تلك التي تم الحصول عليها باستخدام طرق الترسيب الأخرى حيث لطريقة الترسيب هذه العديد من الميزات:

1- تجمع تقنية ترسيب الأفلام الرقيقة باستخدام البلازما المحرقية بين ثلاث تقنيات ترسيب مختلفة وهي: الترسيب بالتبخير الفيزيائي (PVD) والتبخير باستخدام الحزم الالكترونية (PvD) واasma-enhanced) والترسيب بالبخار الكيميائي المحسّن بالبلازما (beam evaporation hybrid deposition) وبالتالي فهي تقنية ترسيب هجينة (chemical vapour deposition). (technique).

2- معدلات الترسيب في جهاز البلازما المحرقية الكثيفة مرتفعة للغاية مقارنة بطرق الترسيب الأخرى وذلك بسبب الاجتثاث الكثيف لمواد المصعد بواسطة حزم الالكترونات عالية الطاقة الناتجة عن قبضة البلازما.

3- لا حاجة لتسخين الركيزة حيث تقوم الأيونات ذات الطاقة (40 keV – 2 MeV) الناتجة عن قبضة البلازما في تسخين الركيزة إلى درجات حرارة عالية.

4- استهلاك منخفض للغاز حيث إن عملية تشغيل جهاز البلازما المحرقية الكثيفة يتطلب غاز بضغط منخفض مع ثبات كمية الغاز بدلاً من عمليات تدفق الغاز في طرق الترسيب الأخرى.
5- إمكانية تشغيل جهاز البلازما المحرقية الكثيفة عن طريق تفريغ مكثف بسيط.
6- الالتصاق الجيد بين المادة والركيزة وذلك بسبب معالجة سطح الركيزة بواسطة أيونات الغاز

لا " لا يستعنى الجيد بين المعادة والربيل ودلك بسبب معالجة تستعم الربيل بواسطة اليودك الع المستخدم ضمن جهاز البلازما المحرقية الكثيفة. 7- يمكن إجراء عملية الترسيب في زمن قصير جداً (عدة مئات من نانو ثانية).
8- إمكانية التحكم ببارامترات جهاز البلازما المحرقية الكثيفة (ضغط الغاز، طاقة تشغيل الجهاز، الأبعاد الهندسية للأقطاب) وبالتالي التحكم بتدفق وطاقة حزم الأيونات الصادرة.
دراسة حزم الأيونات الصادرة عن البلازما المحرقية الكثيفة:

تُقسم عملية تطور البلازما المحرقية إلى مرحلتين أساسيتين هما المرحلة المحورية والمرحلة القطرية، يتم في المرحلة المحورية تأيين الغاز الموجود ضمن الحجرة من خلال الطاقة الكهربائية المختزنة في بنك المكثفات وتشكّل غمد البلازما الذي يتحرك تحت تأثير قوة لورنتز على طول محور الحجرة حتى الوصول إلى نهاية المصعد حيث يبدأ بالتحرك قطرياً وتتراكم طبقة البلازما ليتموضع فوق قمة المصعد عمود صغير حار جداً وكثيف جداً من البلازما يدعى القبضة (pinch)، ونظراً لكون شحنة المصعد موجبة فإنه يتم استقطاب الإلكترونات باتجاه المصعد والأيونات الموجبة بالجهة المقابلة ويتشكل ما يصطلح على تسميته "ثنائي البلازما" (plasma diode)، تستمر هذه القبضة لفترة صغيرة من الزمن ثم تتهار نتيجة لا استقرارات البلازما، ويؤدي انهيار القبضة إلى توليد كمون كهربائي نقطي عالي جداً (أكبر من الكمون المستخدم في عملية التشغيل) يؤدي هذا الكمون إلى قذف الأيونات بعيداً عن المصعد والإلكترونات باتجاه المصعد المنفي ويؤدي في توليد كمون حربة الأيونات المادة على نموع المستخدم في عملية التشغيل) يؤدي هذا الكمون إلى قذف الأيونات الصادرة على نوع وضغط الغاز وعلى بارامترات الجهاز المستخدم.

الشكل (2): يوضح انهيار قبضة البلازما وانطلاق الأيونات منها درس S.LEE و S.H.Saw [17] خصائص حزمة الأيونات الصادرة عن البلازما المحرقية الكثيفة بعد انهيار قبضة البلازما وقذف الأيونات منها نتيجة الكمون المتولد ضمن قبضة البلازما وتوصلوا إلى العلاقات التي تعطي كلاً من عدد وطاقة أيونات الحزمة وفق الآتي: عدد أيونات الحزمة (Number of ions beam) [17]: يتم حساب عدد الأيونات الموجودة ضمن الحزمة من خلال جداء سيولة الأيونات بالمقطع العرضي لقبضة البلازما:

$$N_i = 2.75 \times 10^{15} \frac{f_e}{\sqrt{M.Z_{eff}}} \frac{\ln\left(\frac{b}{r_p}\right)}{r_p^2} \frac{I_{pinch}^2}{\sqrt{U}} \cdot \tau \cdot \pi r_p^2$$

حيث: f_e جزء طاقة قبضة البلازما الذي تحمله الأيونات، M كتلة الأيون، Z_{eff} الشحنة الفعالة، b نصف قطر المهبط، r_p نصف قطر القبضة، I_{pinch} تيار القبضة، U كمون التسريع الناشئ عن انهيار قبضة البلازما $V \approx 3V$ حيث V قيمة الكمون المتولد ضمن قبضة البلازما، τ فترة بقاء القبضة.

طاقة أيونات الحزمة (lons beam Energy) [17]: يتم حساب طاقة الحزمة بضرب عدد
أيونات الحزمة بالشحنة الفعالة والكمون المتولد ضمن القبضة وفق العلاقة:
$$E_{heam} = N_i \times Z_{eff}. U$$

دراسة تغيرات خصائص حزمة الأيونات الصادرة عن جهاز البلازما المحرقية الكثيفة NX2 مع تغير نوع الغاز المستخدم

تحديد بارامترات الجهاز المدروس:

باستخدام برنامج Lee الحاسوبي ذي الإصدار (RADPFV5.15de.c1) [18] تمّت محاكاة جهاز البلازما المحرقية الكثيفة NX2 وفق البارامترات التالية [19]:

- بارامترات بنك المكثفات: التحريض , $L_0 = 20$ nH, المعة $C_0 = 28~\mu$ F بارامترات بنك المكثفات: التحريض , $r_0 = 2.3~m\Omega$
- بارامترات أنبوب البلازما المحرقية: نصف قطر المهبط b = 4.1 cm, نصف قطر
 المصعد z₀ = 5 cm, طول المصعد a = 1.9 cm.
 - بارامترات التشغيل: الجهد المطبق V₀ = 14 kV, الضغط P₀ =11 Torr.
- بارامترات النموذج: عامل الكتلة في المرحلة المحورية f_m=0.08, عامل التيار في المرحلة المحورية f_m=0.7, عامل التيار في المرحلة المحورية f_m=0.7, عامل التيار في المرحلة القطرية f_m=0.7, عامل التيار في المرحلة القطرية f_r=0.7

تغير عدد أيونات حزمة أيونات الآزوت: بالاستفادة من نتائج مميزات القبضة التي تم الحصول عليها من برنامج Lee تم إيجاد عدد أيونات حزمة الآزوت الناتجة عند كل قيمة للضغط وكانت النتائج كما هي موضحة في الجدول (1) الآتي:

الضغط	عدد أيونات الحزمة	
Po	lons	
(Torr)		
1	8.7E+14	
2	1.4E+15	
3	1.8E+15	
4	2.2E+15	
5	2.4E+15	
6	2.6E+15	
7	2.7E+15	
8	2.8E+15	
9	2.9E+15	
10	2.8E+15	

فير الضغط	وت عند تا	أيونات الآز): تغير عدد	الجدول (1)
-----------	-----------	-------------	-------------	------------

يظهر من النتائج ازدياد عدد أيونات الآزوت الصادرة مع ازدياد الضغط حتى الوصول إلى قيمة عظمى (10 عند الضغط (10 عند الضغط (10 عند الضغط (10) ثم يبدأ ينخفض قليلاً عند الضغط (10) Torr) كما هو موضح في الشكل (3).

الشكل (3): تغير عدد أيونات الآزوت عند تغير الضغط تغير طاقة حزمة أيونات الآزوت: تم حساب طاقة حزمة أيونات الآزوت الناتجة كما هو موضح في الجدول (2) الآتي:

الضغط	طاقة حزمة الأيونات	
Po	(Joul)	
(Torr)		
1	121.0	
2	154.2	
3	172.7	
4	178.8	
5	178.8	
6	169.5	
7	156.8	
8	139.5	
9	118.3	
10	95.2	

الجدول (2) تغير طاقة حزمة أيونات الآزوت عند تغير ضغط الغاز

وبرسم تغيرات طاقة حزمة أيونات الآزوت الصادرة بتغير الضغط نلاحظ ازدياد طاقة الحزمة من القيمة (121 Joul) عند الضغط (Torr) عند الضغط (Torr) عند الضغط كما هو موضح في الشكل (4).

الشكل (4): تغير طاقة حزمة أيونات الآزوت عند تغير الضغط

يمكن وفقاً لهذه الميزات استخدام حزمة الأيونات الصادرة عن انهيار قبضة البلازما المتشكلة في جهاز البلازما المحرقية الكثيفة في ترسيب الأفلام الرقيقة ولذلك فقد قمنا بدراسة نظرية لاستخدام حزمة أيونات الآزوت الصادرة عن جهاز NX2 واصطدامها بركيزة من التيتانيوم للحصول على

وبالتالي يمكن الحصول على قيمة الطاقة التي يحملها كل أيون من أيونات الآزوت المقذوفة من قبضة البلازما:

$$E = \left[5.59 \times 10^{-4} - \frac{2.5}{\alpha}N\right]^{-0.4} \dots \dots \dots (4)$$

$$[21] \quad (4)$$

حيث 10 × 11.2 = 11.2 ب 10.
تحديد قيمة ضغط غاز الآزوت التي يتحقق عندها أعلى قيمة للطاقة التي يحملها الأيون:
بالاستفادة من قيم عدد أيونات الآزوت التي تم حسابها وباستخدام العلاقة (4) تمّ حساب قيمة
الطاقة التي يحملها أيون عند قيم ضغط الغاز التي تحقق صحة العلاقة وكانت النتائج كالتالي:
ضغط الغاز P= 1 Torr
$$\Rightarrow$$

E= 27.75 KeV	Æ	P= 2 Torr
E= 33.22 KeV	\Leftarrow	P= 3 Torr
E= 47.47 KeV	\Leftarrow	P= 4 Torr
E= 71.31 KeV	¢	P= 5 Torr

نلاحظ من أنه عند قيمة الضغط P= 5 Torr يتحقق عندها أعلى قيمة للطاقة التي يحملها أيون الأزوت.

حساب عدد أيونات الآزوت الواصلة إلى ركيزة التيتانيوم:
تصدر أيونات الآزوت ضمن مخروط رأسه يقع على قبضة البلازما وقاعدته تقع على الركيزة، أي
أنه ليس كل الأيونات الصادرة عن قبضة البلازما سوف تسقط على الركيزة لذلك من الضروري
حساب عدد الأيونات الساقطة على الركيزة حيث تعطى بالعلاقة [21]:
$$N_d = \frac{N}{\Delta h. \sigma} \dots (5)$$

حيث: ∆h سماكة الركيزة

الزاوية المجسمة التي تصدر ضمنها الأيونات وتعطى بالعلاقة: $\sigma = \pi. (L. \tan \theta)^2......(6)$

نظراً لإمكانية استخدام جهاز البلازما المحرقية كمنبع للأيونات للاستخدام في اصطناع المواد وصناعة الأفلام الرقيقة فقد قمنا بإجراء دراسة نظرية للاستفادة من خصائص حزمة أيونات الآزوت التي توصلنا إليها في بحثنا للحصول على الفيلم الرقيق TIN. قمنا بإيجاد طيف طاقة أيونات الأزوت الصّادرة وتمكنا من تحديد قيمة ضغط غاز الآزوت (P= 5 Torr) حيث عند هذه القيمة يحمل أيون الآزوت أكبر مقدار من الطاقة E= 71.31 KeV. تمّ حساب عدد الأيونات الواصلة إلى ركيزة التيتانيوم Nd=3.2×10¹⁴ ions .

المراجع المستخدمة:

1. Ahmad, R., Khan, I. A., Hussain, T., & Umar, Z. A. (2017). **Plasma Focus Device: A Novel Facility for Hard Coatings**. In Plasma Science and Technology for Emerging Economies (pp. 355–412). Springer, Singapore.

2. J.W. Mather, Formation of a high-density deuterium plasma focus. Phys. Fluids 8(2), 366– 377 (1965)

3. N.V. Filippov, T.I. Filippova, V.P. Vinogradov, **Dense, high-temperature plasma in a noncylindrical Z-pinch**. Nucl. Fusion Suppl. 2, 577–587 (1962)

4. E.J. Lerner, S. Krupakar Murali, D. Shannon, A.M. Blake, F.V. Roessel, Fusion reaction from greater than 150 keV ions in a dense plasma focus plasmoid. Phys. Plasmas 19, 032704 (2012)

5. S. Lee, P. Lee, G. Zhang, X. Feng, V.A. Gribkov, M. Liu, A. Serban, T.K. Wong, **High rep rate high performance plasma focus as a powerful radiation source**. IEEE Trans. Plasma Sci. 26, 1119–1126 (1998)

6. S. Hussain, M. Shafiq, R. Ahmad, A. Waheed, M. Zakaullah, **Plasma** focus as a possible X-ray source for radiography. Plasma Sources Sci. Technol. 14, 61–69 (2005)

7. M.A. Tafreshi, M.M. Nasseri, N. Nabipour, D. Rostamifard, A. Nasiri, **Application of plasma focus device in fast industrial radiography**. J. Fusion Energy 33(6), 689–692 (2014)

8. M.J. Inestrosa–Izurieta, P. Jauregui, L. Soto, **Deposition of materials** using a plasma focus of tens of joules. J. Phys. Conf. Ser. 720, 012045 (2016)

11

9. R.S. Rawat, V. Aggarwal, M. Hassan, P. Lee, S.V. Springham, T.L. Tan, S. Lee, Nano-phase titanium dioxide thin film deposited by repetitive plasma focus: ion irradiation and annealing based phase transformation and agglomeration. Appl. Surf. Sci. 255, 2932–2941 (2008)

M. Sadiq, M. Shafiq, A. Waheed, R. Ahmad, M. Zakaullah,
 Amorphization of silicon by ion irradiation in dense plasma focus.
 Phys. Lett. A 352, 150–154 (2006)

11. Z.P. Wang, H.R. Yousefi, Y. Nishino, H. Ito, K. Masugata, **Preparation of silicon carbide film by a plasma focus device**. Phys. Lett. A 372, 7179–7182 (2008)

12. R.S. Rawat, M.P. Srivastava, S. Tandon, A. Mansingh, Crystallization of an amorphous lead zirconate titanate thin film with a dense-plasma-focus device. Phys. Rev. B 47, 4858–4862 (1993)

13. Z.Y. Pan, R.S. Rawat, R. Verma, J.J. Lin, H. Yan, R.V. Ramanujan, P. Lee, S.V. Springham, T.L. Tan, **Miniature plasma focus as a novel device for synthesis of soft magnetic FeCo thin films**. Phys. Lett. A 374, 1043–1048 (2010)

14. O. Mangla, S. Roy, K. Ostrikov, Dense plasma focus-based nanofabrication of III–V semiconductors: unique features and recent advances. Nanomaterials 6, 4–16 (2016)

15. J.N. Feugeas, E.C. Llonch, C.O. de Gonzalez, G. Galambos, Nitrogen implantation of AISI 304 stainless steel with a coaxial plasma gun. J. Appl. Phys. 64, 2648–2651 (1988)

16. R.S. Rawat, W.M. Chew, P. Lee, T. White, S. Lee, Deposition of titanium nitride thin films on stainless steel AISI 304 substrates using a plasma focus device. Surf. Coat. Technol. 173, 276–284 (2003)

12

17. S. Lee and S. H. Saw. **Plasma focus ion beam fluence and flux**—**For various gases**. PHYSICS OF PLASMAS 20, 062702 (2013).

18. Lee.S., Radiative dense plasma focus computation package: RADPF.

19. Lee, S., & Saw, S. H. (2013). Scaling of Ion Beams from Plasma Focus in Various Gases. INTI International University Nilai Malaysia, 14 June 2013.

20. M. Hassan , A. Qayyum , R. Ahmad , R.S. Rawat , P. Lee , S.M. Hassan , G. Murtaza , M. Zakaullah. **Dense plasma focus ion-based titanium nitride coating on titanium**. Nuclear Instruments and Methods in Physics Research B 267 (2009) 1911–1917.

21. G S'anchez and J Feugeas. The thermal evolution of targets under plasma focus pulsed ion implantation. J. Phys. D: Appl. Phys. 30 (1997) 927–936.

13